Search Based Code Generation for Machine Learning Programs

نویسندگان

  • Muhammad Zubair Malik
  • Muhammad Nawaz
  • Nimrah Mustafa
  • Junaid Haroon Siddiqui
چکیده

Machine Learning (ML) has revamped every domain of life as it provides powerful tools to build complex systems that learn and improve from experience and data. Our key insight is that to solve a machine learning problem, data scientists do not invent a new algorithm each time, but evaluate a range of existing models with different configurations and select the best one. This task is laborious, error-prone, and drains a large chunk of project budget and time. In this paper we present a novel framework inspired by programming by Sketching[8] and Partial Evaluation[4] to minimize human intervention in developing ML solutions. We templatize machine learning algorithms to expose configuration choices as holes to be searched. We share code and computation between different algorithms, and only partially evaluate configuration space of algorithms based on information gained from initial algorithm evaluations. We also employ hierarchical and heuristic based pruning to reduce the search space. Our initial findings indicate that our approach can generate highly accurate ML models. Interviews with data scientists show that they feel our framework can eliminate sources of common errors and significantly reduce development time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing

Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

Tools for machine-learning-based empirical autotuning and specialization

The process of empirical autotuning results in the generation of many code variants which are tested, found to be suboptimal, and discarded. By retaining annotated performance profiles of each variant tested over the course of many autotuning runs of the same code across different hardware environments and different input datasets, we can apply machine learning algorithms to generate classifier...

متن کامل

Automatic Selection of Machine Learning Models for Compiler Heuristic Generation

Machine learning has shown its capabilities for an automatic generation of heuristics used by optimizing compilers. The advantages of these heuristics are that they can be easily adopted to a new environment and in some cases outperform hand-crafted compiler optimizations. However, this approach shifts the effort from manual heuristic tuning to the model selection problem of machine learning – ...

متن کامل

Automatic Selection of Machine Learning Models for WCET-aware Compiler Heuristic Generation

Machine learning has shown its capabilities for an automatic generation of heuristics used by optimizing compilers. The advantages of these heuristics are that they can be easily adopted to a new environment and in some cases outperform hand-crafted compiler optimizations. However, this approach shifts the effort from manual heuristic tuning to the model selection problem of machine learning – ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.09373  شماره 

صفحات  -

تاریخ انتشار 2018